Ordering functions

Raphaël Carroy

Universität Münster

Hejnice, Czech Republic January 27th, 2014 General background: 0-dimensional Polish spaces, and functions

- The **Baire space** ω^{ω} of infinite sequences of integers.
- The **product topology** on it.
- The classes Σ^0_{α} , Π^0_{α} on the α -th level of the Borel hierarchy.

Each 0-dimensional Polish space is isomorphic to a closed $A \subseteq \omega^{\omega}$.

- A function is from a closed subset of ω^{ω} to ω^{ω} .
- A function f is Baire class α if the inverse image by f of any open subset of ω^ω is Σ⁰_{α+1}.
- A function f is **Borel** if it is Baire class α for some $\alpha < \omega_1$.

Objective : A quasi-order on functions

Project:

Finding a solid notion to classify definable, *i.e.* Borel, functions.

- A quasi-order (qo) on a set Q is a reflexive and transitive relation $\leq_Q \subseteq Q^2$.
- Denote:
 - $p <_Q q \text{ when } p \leq_Q q \text{ but } q \not\leq_Q p,$
 - (\leq_Q -equivalence) $p \equiv_Q q$ when $p \leq_Q q$ and $q \leq_Q p$

We are looking for a qo that both:

- has nice topological properties.
- is simple enough to convey valuable information.

Requirements : being well-behaved.

Refining the Baire hierarchy

If g reduces f and g is Baire class α then so should be f.

Being well-quasi-ordered (wqo)

- well founded, it admits no infinite descending chain;
- no infinite antichain

An **antichain** is a set of pairwise incomparable elements. The Wadge qo on Borel sets is wqo, we look for one that is compatible with it.

The Wadge qo on Borel sets

 $A \leq_W B$ iff $A = \sigma^{-1}(B)$ iff $\mathbf{1}_A = \mathbf{1}_B \circ \sigma$ for some continuous σ .

Requirements : refining the known hierarchies

The continuous embeddability

A continuously embeds in *B* iff $g \circ f = Id_A$ holds for some continuous functions $f : A \to B$ and $g : B \to A$.

The **Borel degree function of** f is

$$egin{aligned} &d_f: \omega_1 \longrightarrow \omega_1 \ &lpha \longmapsto \min\{eta \in \omega_1 \mid f^{-1}(\mathbf{\Sigma}^{\mathbf{0}}_{lpha}) \subseteq \mathbf{\Sigma}^{\mathbf{0}}_{eta}\}. \end{aligned}$$

The Borel order on functions $f \leq_B g$ iff $d_f(\alpha) \leq d_g(\alpha)$ for all $\alpha \in \omega_1$. Natural candidates: Wadge's qo on functions

Wadge's qo on sets can be generalised to functions:

 $f \leq_W g$ iff $f = g \circ \sigma$ for some continuous σ .

It would be perfect, except ..

Problem:

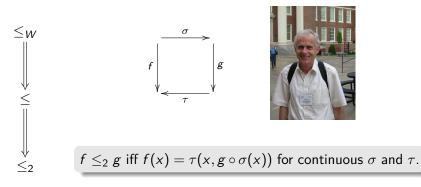
The constant functions form an antichain of size 2^{\aleph_0} !

Solution:

We have to weaken the condition.

Natural candidates: Hertling and Weihrauch's (1993)

 $f \leq g$ iff $f = \tau \circ g \circ \sigma$ for some continuous σ and τ .

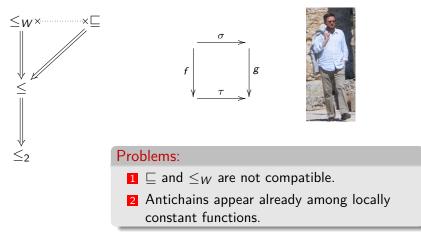


Problem:

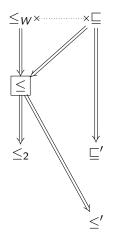
The continuous functions are all \leq_2 -equivalent!

Natural candidates: Solecki's (1998)

 $f \sqsubseteq g$ iff $\tau \circ f = g \circ \sigma$ for some continuous **embeddings** σ and τ .



Other candidates: Can weaken the ones we have?



First try: a weakening of \sqsubseteq

 $f \sqsubseteq' g$ iff $\tau \circ f = g \circ \sigma$ for some continuous **injection** σ and τ .

Problem:

Arbitrarily complex Borel isomorphisms are reduced by the identity.

Second try: a weakening of \leq

 $f \leq g \text{ iff } f = \tau \circ g \circ \sigma \text{ for some}$ Σ_2^0 -measurable σ and τ .

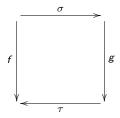
Problem:

Every continuous function is equivalent to a locally constant one.

The one we choose: Hertling and Weihrauch's strong qo

Definition

 $f \leq g$ iff $f = \tau \circ g \circ \sigma$ for some continuous σ and τ .



We choose \leq : what are its first properties?

Properties

1 For any
$$A \subseteq \omega^{\omega}$$
, $\mathbf{1}_A \equiv \mathbf{1}_{A^c}$.

2
$$A \leq_W B \Rightarrow \mathbf{1}_A \leq \mathbf{1}_B$$
 and $\mathbf{1}_A \leq \mathbf{1}_B \Rightarrow A \leq_W B$ or $A^c \leq_W B$.

3 $Id_A \leq Id_B$ iff A continuously embeds into B.

4 If
$$f \leq g$$
 then $d_f(\alpha) \leq d_g(\alpha)$ for all α .

This qo seems to fulfill all requirements...except one.

General Problem

Is \leq a wqo on Borel functions?

This problem being much too general, we ask a more specific question.

ls < a wgo on continuous functions?

First good news.

Proposition

If f is Borel and Im(f) uncountable then $Id_{\omega^{\omega}} \leq f$.

Idea for the proof.

Find a compact $K \subseteq \text{dom}(f)$ such that $f|_K$ is both continuous and injective, hence an embedding. Having a continuous inverse, an embedding reduces $\text{Id}_{\omega^{\omega}}$, so $\text{Id}_{\omega^{\omega}} \leq f|_K \leq f$.

Since $Id_{\omega^{\omega}}$ is maximal among continuous functions..

Corollary

- If f is continuous and Im(f) uncountable then $f \equiv Id_{\omega^{\omega}}$.
- If f is continuous then either $d_f(\alpha) = \alpha$ or $d_f(\alpha) \leq 2$.

So we can focus on continuous functions with countable image.

The Cantor-Bendixson rank of a function.

Notation

 ${\sf C}$ denotes the set of continuous functions with countable image.

Such a function should be locally constant "somewhere", right?

Definition

 $x \in \text{dom}(f)$ is *f*-isolated iff $f^{-1}(\{f(x)\})$ is neighbourhood of x iff f is locally constant on a neighborhood of x.

Proposition

If $f \in C$ then the set of f-isolated points is dense open in dom(f).

Idea for the proof.

Otherwise the sets $f^{-1}(\{y\})$ for $y \in \text{Im}(f)$ form a countable partition of dom(f) in nowhere dense closed sets, a contradiction with the Baire Category Theorem.

The Cantor-Bendixson rank of a function.

Define by induction a decreasing sequence of closed sets.

Definition

•
$$\operatorname{CB}_0(f) = \operatorname{dom}(f)$$
,

- $CB_{\alpha+1}(f) = \{x \in CB_{\alpha}(f) \mid x \text{ is not } f|_{CB_{\alpha}(f)}\text{-isolated}\},\$
- $CB_{\lambda}(f) = \bigcap_{\alpha \in \lambda} CB_{\alpha}(f)$ for λ limit.

If
$$f \in \mathsf{C}$$
, then for some $\alpha < \omega_1 \ \mathsf{CB}_{\alpha}(f) = \emptyset$.

Definition

The minimal such α is the **Cantor-Bendixson rank of** f, denoted by CB(f).

For a closed set F, a point $x \in F$ is isolated iff it is Id_F -isolated, so the usual Cantor-Bendixson rank of F is in fact the rank of Id_F .

The type of a function.

We have now a stratification of C.

For $\alpha < \omega_1$, denote $C_{\alpha} = \{f \in C \mid CB(f) = \alpha\}.$

For example, C_1 is exactly the set of locally constant functions.

Fact

Notation

For $f,g \in C_1$, $|\operatorname{Im}(f)| \le |\operatorname{Im}(g)|$ implies $f \le g$.

Hence C_1 is a well-order of size $\omega + 1$.

Can we generalise this fact?

If $CB(f) = \alpha + 1$, then $f|_{CB_{\alpha}(f)}$ is locally constant. Denote N_f the cardinal of its image. Define N_f to be 0 if CB(f) is limit.

Set the **type** of $f \in C$ to be $tp(f) = (CB(f), N_f)$.

Second good news: when the domain is compact.

The type is an invariant for \leq .

Fact

For
$$f, g \in C$$
, $f \leq g$ implies $tp(f) \leq_{lex} tp(g)$.

The converse is in general not true. However, if $C^* = \{f \in C \mid dom(f) \text{ compact }\},\$

Theorem (C. 2013)

For
$$f,g \in \mathsf{C}^{\star}$$
, $f \leq g \Leftrightarrow tp(f) \leq_{\mathit{lex}} tp(g)$.

So the reduction we chose is on C^\star even better than a wqo!

Corollary

The class C^{*} under \leq is a well-order of size ω_1 .

What about the general case?

A result on the general structure of C.

Of course the general case is more complex. However:

- If CB(f) is "much smaller" than CB(g) then $f \leq g$.
- The levels C_{λ} , for λ limit, are very simple.

Definition

For n, m integers, set $n \leq m$ iff n = m or 2n < m.

For $\alpha \in \omega_1$ call $n_\alpha \in \omega$ such that $\alpha = \lambda_\alpha + n_\alpha$ with λ_α limit.

Now we can state precisely the result.

General Structure Theorem (C. 2013)

For
$$f, g \in C$$
 such that $\alpha = CB(f) \leq CB(g) = \beta$
1 If $n_{\alpha} = 0$ or $\lambda_{\alpha} < \lambda_{\beta}$, then $f \leq g$.
2 If $\lambda_{\alpha} = \lambda_{\beta}$ and $n_{\alpha} <^{\bullet} n_{\beta}$ then $f \leq g$.

Consequences.

Let F be any closed set of CB-rank a limit ordinal λ .

Corollary

 $(\mathsf{C}_{\lambda}/\equiv)=\{\mathsf{Id}_{F}\}.$

Set now C' = $(\sum_{\lambda \text{ limit}} \sum_{n \in \omega} C_{\lambda+n}, \leq_{lex})$ to be the lexicographical quasi-order on the triples (λ, n, f) such that

• λ is limit

• integers are ordered with \leq^{\bullet} ,

•
$$CB(f) = \lambda + n$$

Corollary

- 1 If C' is wqo then so is C.
- **2** If C_{α} is wqo for all $\alpha < \omega_1$ then C is wqo.

Consequences: embedding on closed sets.

The general case of C is still unknown, but:

Notation

•
$$\mathcal{A} = \{ f \in \mathsf{C} \mid f \equiv \mathsf{Id}_A \text{ for some closed } A \}.$$

 $\blacksquare \mathcal{A}_{\alpha} = \mathcal{A} \cap \mathsf{C}_{\alpha}.$

Let us apply our analysis, the induction gives

Proposition

If (A_{α} wqo implies $A_{\alpha+1}$ wqo) for all $\alpha < \omega_1$ then A is wqo.

A closed set of CB rank $\alpha + 1$ admits a decomposition into a sequence of sets of rank α , so:

Proposition

 $(\mathcal{A}_{lpha})^{\omega}$ wqo implies \mathcal{A}_{lpha+1} wqo.

Consequences: embedding on closed sets.

Question

Does Q wqo imply Q^{ω} wqo?

Answer: No! However by strengthening the hypothesis on $\mathcal{A}_{\alpha \cdots}$

Proposition

$$\mathcal{A}_lpha$$
 better-quasi-order (bqo) \Rightarrow $(\mathcal{A}_lpha)^\omega$ bqo \Rightarrow \mathcal{A}_{lpha+1} bqo.

Finally, piecing everything together,

Theorem

Continuous embeddability is a wqo on the closed subsets of ω^{ω} .

Conjecture

(C, \leq) is a wqo.

Conjecture

The class of Borel functions, ordered by \leq , is a wqo.

Conjecture

Given a Borel function f, there is a closed set $F \subseteq \operatorname{dom}(f)$ such that

- $f|_F$ is \leq -equivalent to a Borel isomorphism,
- $\operatorname{Im}(f|_{F^c})$ is countable.

Conjecture

(C, \leq) is a wqo.

Conjecture

The class of Borel functions, ordered by \leq , is a wqo.

Conjecture

Given a Borel function f, there is a closed set $F \subseteq \text{dom}(f)$ such that

- $f|_F$ is \leq -equivalent to a Borel isomorphism,
- $\operatorname{Im}(f|_{F^c})$ is countable.

Thank you!